Research Interests
Microbiota Reprogramming, Imaging, Microfluidics, Microbiome, Bacteria, Phages, Omic analyses, Computational Modeling, Physical Perturbations
Research Focus Teams
Cancer, Rare Diseases, Diabetes, Autism, Aging, Obesity, Alzheimer’s, Crohn’s/Colitis
Departments
Contact
Email: carolina.tropini@ubc.ca
Office Phone: phone: 604–827–2860
Publications
Lab Website
Dr. Carolina Tropini is an Assistant Professor at the University of British Columbia in the Department of Microbiology and Immunology and the School of Biomedical Engineering. She is a Paul Allen Distinguished Investigator and in 2020 she was the first Canadian to be awarded the Johnson & Johnson Women in STEM2D Scholar in the field of Engineering. She is a CIFAR Fellow in the Human & the Microbiome Program (2021-2026) and a Michael Smith Foundation for Health Research Scholar (2019-2024) and in 2019 was nominated a CIFAR Azrieli Global Scholar.
Dr. Tropini conducted her Ph.D. in Biophysics at Stanford University. Her studies in the laboratory of Dr. KC Huang combined computational and experimental techniques to investigate bacterial mechanics and morphogenesis. In 2014 she received the James S. McDonnell Foundation Postdoctoral Fellowship Award and she joined the laboratory of Dr. Justin Sonnenburg at Stanford. During her post-doc, Dr. Tropini applied her background in biophysics to study the impact of physical perturbations on host-associated microbial communities living in the gut.
Human health is intimately connected to our microbiota, a constantly-evolving consortium of trillions of bacteria that live on and within us, producing compounds that provide nourishment and affecting myriad functions including immunity and neurodevelopment. Our bodies and our surroundings are composed of diverse environments with widely different physical and chemical properties, including water availability, salt concentration, acidity, and temperature. These properties strongly influence which microbes will colonize and survive in, on, and outside our bodies. Our laboratory combines cutting-edge experimental and computational techniques to study how these properties affect the microbiota, and transmission of bacteria between hosts in health and disease.
More than 20 million Canadians suffer every year from digestive disorders involving the gut microbiota. The varying abiotic intestinal microenvironment (pH, osmolality, mucus availability) seen in these diseases restricts the ability of certain bacteria to grow in the gut, greatly modifying the microbial community. The mechanisms of bacterial resilience to these common environmental shifts are not understood. The long-term goal of our research program is to determine the mechanisms by which microbial communities remain resilient during disturbances (perturbations) in their physical (abiotic) environment.
- Osmotic diarrhea is a prevalent condition, caused by food intolerance, celiac disease, and widespread use of laxatives. Previous work has shown that, during osmotic diarrhea, there is increased susceptibility to infection by pathogens, indicating that disrupted abiotic conditions may have detrimental effects on key microbiota functions, including colonization resistance. In previous work we have shown that osmotic diarrhea disrupts the colonic environment, leads to extinction of key bacterial families, and decreases microbial diversity. We seek to discover the mechanisms involved in microbiota resilience to osmotic perturbation due to osmotic diarrhea by determining the behavior of key microbial families in clinical samples and then testing specific mechanisms in the laboratory.
- One of the ways that bacterial community dynamics are affected during abiotic perturbations is through changes in the infective and reproductive abilities of viruses that infect bacteria, known as bacteriophages or phages. Although phages are the most abundant organisms on Earth, we know very little about the complexities of the relationship between them and their bacterial hosts, particularly in the context of abiotic perturbations. Understanding the molecular mechanisms underlying this interaction is essential to understanding microbial communities associated with various hosts and environments. Our lab aims to unravel the bacterial as well as phage-dependent mechanisms by which phage infection is resilient to environmental perturbations.
- The varying abiotic intestinal microenvironment (pH, osmolality, mucus availability) in inflammatory bowel disease (IBD) restricts the ability of certain bacteria to grow in the gut, thereby limiting fecal microbiota transplant (FMT) efficacy. We know very little about the mechanisms of interplay between the gut microbiota and abiotic environmental conditions in IBD. Our objectives are therefore to 1) determine how the IBD microbiota changes the abiotic gut environment and 2) predict and engineer the ability of microbial members from healthy subjects to colonize an altered IBD gut environment and ameliorate it. By characterizing the luminal environment (pH, osmolality, mucus and bacterial components) from IBD models and human biopsies and using in vitro and bioengineering approaches combined with computational analysis we aim to create a predictive model of the interplay between gut environment and microbial communities in IBD. This understanding is necessary to improve treatment efficacy and to develop novel personalized IBD therapies.